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Abstract

Numerous systems can be described using masses and rods in transverse vibration. Motivated by the desire to model
the effects of axial strain and temperature on systems of this type, we develop a procedure to determine the frequencies
of transverse vibration of devices composed of rods and rigid masses as functions of these effects. Our models allow for
the rods to be composed of anisotropic materials with material symmetry contained in the cubic system. The goal of the
present paper is to demonstrate the modeling procedure using the example of a double-ended tuning fork (DETF). Fol-
lowing this, the results of a slightly more complicated model are compared with the experimental results found for a
prototype MEMS DETF sensor composed of polycrystalline silicon.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

By way of motivation, one design for a strain sensor is based on the premise that an axial lengthening of
a rod will increase its transverse natural frequency. This idea is exploited in double-ended tuning fork
(DETF) strain sensors (see Fig. 1). The DETF design was first introduced and patented in the framework
of quartz crystal oscillators by EerNisse (1980). Recently, there has been interest in designing microelectro-
mechanical (MEMS) strain sensors using a DETF.
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Fig. 1. Schematic of a double ended tuning fork (DETF). This device consists of two central rods (known as tines) which are connected
to end masses. The end masses are then attached by rods (known as anchors) to the substrate. Usually, the substrate and DETF are
fabricated from the same silicon wafer.

Fig. 2. Four possible resonator designs which the modeling procedure in this paper can accommodate.
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Analyzing a silicon MEMS strain sensor which is based on a DETF is non-trivial. First, there is the issue
of the anisotropy of the silicon from which the sensor is fabricated. Next, the lateral contraction of the
DETF tines induced by the axial strain needs to be considered. Among other issues, there is also the issue
of temperature. Most existing models of the DETF are based on the Bernoulli–Euler beam and Timo-
shenko beam theories and the aforementioned effects are not considered. A finite element model, such as
the one used by Beeby et al. (2000) for a MEMS strain gauge, can of course be used, however these models
do not provide general design guidelines and can be computationally intensive.

In the present paper, we will develop a model of the transverse vibrations of a DETF composed of crys-
talline silicon. The model incorporates the end masses, the anisotropy of the silicon, finite deformation ef-
fects, and thermal influences and provides a mapping of the transverse resonant frequencies as functions of
axial strain and temperature for the DETF. The rods of the DETF are described using a Cosserat rod the-
ory developed by Green, Naghdi and several of their coworkers.1 The modeling procedure for the DETF
can be easily extended to other resonator designs such as those found in Fig. 2, and in fact, we use a similar
procedure to model a slightly more complicated model than the basic DETF.

An outline of the paper is as follows. We first provide a brief synopsis of the ideas of Cosserat rod theory
important to the present work. This theory is sufficiently general to encompass both Bernoulli–Euler and
Timoshenko beam theories, and we use this theory to model the deformation of the system under applied
axial strains as well as the transverse deformations of the system. Next, we discuss the free-energy of a rod
1 The interested reader is referred to the review article (Naghdi, 1982) and the monograph (Rubin, 2000) for references.
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composed of a material with cubic symmetry. This section of the paper is primarily based on an earlier
work by Green and Naghdi (1979) which we extend by solving the equations for rectangular cross-sections
as well as by solving for cubic material with specific crystal orientations. We also relate the constitutive
work of Green and Naghdi (1979) to the works of Luo and O�Reilly (2000) and O�Reilly (1998). Also in-
cluded in this section are prescriptions for, and values of, the Timoshenko shear correction factors and the
torsional rigidity of an orthotropic rectangular prismatic rod composed of a material with cubic symmetry.

Next, a model of the axial deformation of the system is developed which includes thermal effects as well
as the effects of axial elongation. This model provides the cross-section deformation as well as the internal
forces generated by a specific axial extension. To complete the system model, we consider transverse vibra-
tion using the Cosserat rod theory. The equations for these vibrations are equivalent to those of a pre-
stressed, anisotropic thermoelastic Timoshenko beam. Finally, we combine the axial and transverse
models to determine the natural frequencies of the system as functions of strain and temperature. The re-
sults of the basic DETF as well as a comparison between the predicted results of a more complicated model
and the experimental results of a prototype MEMS resonant sensor are presented. In the concluding section
of the paper, we also present a brief summary of the assumptions used to construct our model.
2. Synopsis of Cosserat rod theory

The Cosserat rod model was developed by Green and Naghdi and co-workers (cf. Green and Naghdi,
1995; Rubin, 2000). It consists of a material curve, C, embedded in Euclidean 3-space. The curve may
be parameterized by a single convected coordinate n. Associated with each point of this curve are deform-
able vectors, da(n), known as directors which give approximate indications of the deformations of the rod in
the planes normal to the curve (for the current analysis, we will consider the case of two directors).2 The
material curve and directors together are known as a Cosserat curve (see Fig. 3). The position of a point
on C is denoted by r(n), and we define
2 In
from 1
d3 ¼
or

on
; ð1Þ
and restrict the motion such that the scalar triple product [d1,d2,d3] > 0.
Associated with the Cosserat curve in the present configuration, one can choose a reference configura-

tion such that the material curve is coincidental with the center of area of each cross-section of the unde-
formed body that the Cosserat curve is modeling. The reference configuration of the Cosserat curve is
defined by the vectors Da(n) and R(n) which are the directors at, and position of, a point in the material
curve respectively. As with the current configuration,
D3 ¼
oR

on
; ð2Þ
and one imposes the restriction [D1,D2,D3] > 0. Thus, in the reference configuration we can write the posi-
tion of a point in the three-dimensional body as
R� ¼ RðnÞ þ naDaðnÞ; ð3Þ

where (n1,n2,n) are the coordinates of the material point.

For the present configuration, one assumes the following approximation holds
r� ¼ rþ nada; ð4Þ
this paper, lower case Greek indices run from 1 to 2, upper case Latin indices run from 1 to 4, and lower case Latin indices run
to 3. We invoke the summation convention on repeated indices unless otherwise noted.



Fig. 3. A schematic depicting the reference and current configurations of a Cosserat rod. The dashed lines represent the lateral surface
of the three-dimensional body which the curve is modeling, while the directors Da and da and the curves (indicated by the bold lines)
comprise the Cosserat rod in the current and reference configurations. In this figure, the material points on the curve C are
distinguished by a coordinate n which ranges from n = n1 to n = n2.
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where r* is the position of any particle in the present configuration. To include thermal effects, the temper-
ature in the body is approximated by
h� ¼ hþ naha; ð5Þ

where h = h(n, t) is the temperature of the body at a point on C and ha = ha(n, t) are temperature fields in the
cross-section. From (5), it can be seen that one is assuming a linear variation in temperature across each
cross-section. We refer to the temperature along the curve in the reference configuration by H, and the ref-
erence temperature fields by Ha. We then define
h ¼ h�H;

ha ¼ ha �Ha;
ð6Þ
which are the deviations from the reference temperatures.
The following strain measures for a Cosserat rod are used
cij ¼ di � dj �Di �Dj; ð7Þ
jaj ¼ d0a � dj �D0

a �Dj; ð8Þ
where ( ) 0 = o/on. The measures cij describe deformations in each cross-section such as a contraction in the
d1 direction, while the measures jaj describe how the deformation varies along the length of the rod such as
how the rod is twisting. Using these measures, the free-energy of the rod is
w ¼ wðcij; jai; h; ha;R;Da;H;HaÞ. ð9Þ
As discussed for the purely mechanical case in Green et al. (1974), this is a properly invariant form of the
free-energy for a Cosserat rod.

In the sequel, the body that the Cosserat curve is used to model is assumed to be rod-like. Further, it is
assumed that this rod-like body is straight, has a constant rectangular cross-section, and is unstressed in its
reference configuration. We also let the vectors Da be coincident with the first two vectors, Ea, of an ortho-
normal triad aligned with the principal axes of the rod�s cross-section. That is,
D1 ¼ E1; D2 ¼ E2; D3 ¼
oR

on
¼ E3; ð10Þ
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where E3 lies along the tangent to the curve C. We also assume that the rod is only subject to small defor-
mations, and write
3 O�R
r ¼ Rþ u; di ¼ Di þ di; ð11Þ

where u = uiEi and di = dijEj. Then linear deformation measures are given by
cij ¼ dij þ dji; jai ¼
odai
on

; ð12Þ
where d3i = oui/on. The relationships between the six three-dimensional linear strains �ik and the twelve
linear Cosserat strain measures are recalled in (B.6) and (B.7). For a homogeneous deformation of the
three-dimensional body that the rod is modeling, the following correspondences can be made from these
relations: cik = �ik. Otherwise, some of the strains jai will be non-zero. These strains, representing torsional
(j12 and j12), flexural (j13 and j23) and lateral (j11 and j22) deformations, contribute to the three-dimen-
sional strains in an affine manner.
3. Prescriptions for the constitutive equations

We now turn to prescriptions of the free-energy function for the material and geometries of interest,
which are necessary to use the Cosserat theory. In the present paper, we are interested in a thermoelastic
free-energy function for a rectangular prismatic rod of a material with symmetry in the cubic system. Exam-
ples of material that possess this symmetry are aluminum, diamond, iron, and, as emphasized in the sequel,
silicon. We also assume that the axes of the crystal lattice are aligned with the directors in the reference
configurations, or, equivalently, that the material has (100) orientation. Thus, the rod is orthotropic.

In the paper Green and Naghdi (1979), the authors developed a free-energy function for circular pris-
matic rods with orthotropic symmetry. Their development is non-trivial in that they had to compare exact
solutions from the Cosserat rod theory to those from linear elasticity in order to determine the values of the
various coefficients in the free-energy function.3 We will extend this work to include rods with rectangular
cross-sections (see Fig. 4) and narrow the scope from any orthotropic material to (100) crystalline silicon.

The development of the free-energy function will proceed as follows. First, the symmetry of the rods in
the device is discussed. This is addressed in two equivalent manners. For the first approach, we provide the
symmetry groups of the rods. This method is based on the treatment in Luo and O�Reilly (2000). The sec-
ond approach considers the form-invariance of the free-energy function to transformations of the directors.
This is the method used in Green and Naghdi (1979). Following our discussion of symmetry, we then pro-
ceed, after showing that it is appropriate, by adapting the free-energy function in Green and Naghdi (1979)
to the present case by narrowing from any general orthotropic material to (100) cubic crystals and extend-
ing from only circular cross-sections to rectangular cross-sections.

3.1. Symmetry group for a rod with cubic symmetry

The symmetry of the material, the geometry of the rod, and the orientation of the crystal lattice with
respect to the rod are important factors in reducing the complexity of the Cosserat rod free-energy function.
According to Zheng (1994), the least symmetry that any member of the cubic crystal group is subject to is
the point group T, given by the following generators:
Rð2p=3; cÞ;�Rif g; ð13Þ
eilly (1998) provides a review of the various approaches to this problem for elastic rods.
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Fig. 4. Schematic of one of the parallelepipeds that will be modeled using a Cosserat rod in this paper. The parallelepiped has a height
h, length L and width w. This figure also shows our choice for the referential directors Da, and the material curve C. The former are
taken to be orthonormal and the latter corresponds to the centerline of the parallelepiped. The vector D3 is identical to the tangent
vector to the centerline.
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where R(h,n) are rotations of h degrees about the axis n, Rn is a reflection in the plane described by n, and
4 Sp
shown
c ¼ 1ffiffiffi
3

p ðE1 þ E2 þ E3Þ. ð14Þ
Our subsequent developments hold for any material with at least the symmetries (13).
Now, consider a rod with rectangular cross-section (as shown in Fig. 4) composed of a material with

cubic symmetry and fabricated such that the crystal lattice is oriented in the (100) direction with respect
to the rod. With this assumption, we find a subgroup of T for the (affine) symmetry group AR0

of the
rod. This group is generated by
Rðp;D1Þ; Rðp;D2Þ; Rðp;D3Þ; I; �If g; ð15Þ

where I is the identity tensor. Note that if the rod has a square cross-section, one recovers more of the group
T. The group,
Rðp=2;D1Þ; Rðp=2;D2Þ; Rðp;D3Þ; I; �If g; ð16Þ

is the affine symmetry group for this case.

For a Cosserat rod whose cross-sections are rectangular, we can express symmetry transformations in
terms of the vectors di and Di. It is easy to see that, for the present case, the transformations
ðaÞ D1 ! �D1; d1 ! �d1; d01 ! �d01;

ðbÞ D2 ! �D2; d2 ! �d2; d02 ! �d02;

ðcÞ D3 ! �D3; d3 ! �d3; d0a ! �d0a;

ð17Þ
are equivalent to the transformations (15). The transformations (17) were prescribed by Green and Naghdi
(1979).4 Thus, in the subsequent work to find the constitutive coefficients for the rod we can benefit from
the results given in Green and Naghdi (1979).

Since we are interested in an example with a MEMS device, we now discuss crystalline silicon in more
detail. Silicon crystallizes at standard temperature and pressure in the diamond cubic crystal structure. This
structure is represented in Fig. 5. The Schoenflies symbol for the space group of the diamond cubic crystal
structure is O7

h as given in Bragg and Claringbull (1965). The generators of the related point group Oh are,
from (Zheng, 1994),
ecifically, these are the transformations (a)–(c) given on page 844 of Green and Naghdi (1979). Luo and O�Reilly (2000) have
how these transformations are accommodated in a treatment of material symmetry based on the group (15).



Fig. 5. A unit cell of the diamond cubic crystal structure of crystalline silicon. There is an atom at each corner as well as in the center of
each face of the cube (black circles). In addition, there are four other atoms situated in the interior of the cube (gray circles).
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Rð2p=3; cÞ; Rðp=2;E1Þ; RE2
; �I

� �
. ð18Þ
Crystalline silicon is contained in the cubic system so the forthcoming results pertain to silicon.
3.2. Free-energy function

We now use the symmetries discussed in the previous section to reduce the free-energy function. Using
the director transformations (17), Green and Naghdi showed that for a rod with the material and geometric
properties of the present work, the free-energy function of a linear thermoelastic rod can be no more com-
plicated than
2kw ¼ k1c211 þ k2c222 þ k3c233 þ k4c221 þ k5c223 þ k6c213 þ k7c11c22 þ k8c11c33 þ k9c22c33 þ k10j2
11

þ k11j2
22 þ k12j2

12 þ k13j2
21 þ k14j12j21 þ k15j2

23 þ k16j2
13 þ k17j11j22 þ k18ðhÞ2 þ k19ðh1Þ2

þ k20ðh2Þ2 þ k21c11hþ k22c22hþ k23c33hþ k24j13h1 þ k25j23h2. ð19Þ
A detailed discussion of the reduction from a general quadratic form to the above result is provided in
Appendix A.

To use the rod theory, the 25 constitutive coefficients in (19) must be determined. Since the material
and geometries in question are a subset of those discussed by Green and Naghdi (1979), we will specialize
their results. The first step is to describe the mechanical and thermal properties of the material. We find
from Carlson (1972) and Gurtin (1972) that the linear stress–strain–temperature relationship for cubic crys-
tals is,
rii ¼ h11�ii þ h12ð�jj þ �kkÞ þ miiðh� �HÞ; ðno sum on i; j; kÞ;
rij ¼ h44ð�ij þ �jiÞ þ mijðh� �HÞ ði 6¼ jÞ.

ð20Þ
Here, rij are the components of the stress tensor, �ij are the Cartesian components of the infinitesimal strain
tensor, mij are the components of the stress–temperature tensor, and hij are the components of the elasticity
tensor.
The thermal expansion tensor for silicon is
A ¼ aI; ð21Þ
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where a is the thermal expansion coefficient. From this tensor, we find the related stress–temperature tensor
5 We
M ¼ mI; ð22Þ

where the constant m is given in terms of the thermal expansion coefficient a by5
m ¼ aðh11 þ 2h12Þ. ð23Þ

It follows that the thermoelastic behavior of the material is characterized by the three elastic coefficients,
h11, h12 and h44, the thermal expansion coefficient a, and by the specific heat c.

By specifying the results for the free-energy coefficients found in Green and Naghdi (1979) for cubic crys-
tals, and by extending the results to rectangular cross-sections, the following free-energy constants are
determined (see Appendix B for a full derivation of these results):
k1 ¼ k2 ¼ k3 ¼
1

4
Ah11; k4 ¼ Ah44; k5 ¼ k1Ah44; k6 ¼ k2Ah44; k7 ¼ k8 ¼ k9 ¼

1

2
Ah12;

k10 ¼ I11h12; k11 ¼ I22h12; k12 ¼ k13 ¼
1

4
Dþ 1

2
h44ðI11 þ I22Þ;

k14 ¼ h44ðI11 þ I22Þ �
1

2
D; k15 ¼ I22

ðh11 þ 2h12Þðh11 � h12Þ
ðh11 þ h12Þ

; k16 ¼
I11
I22

k15; k17 ¼ 0;

k18 ¼ �Ac; k19 ¼
k20I11
I22

; k20 ¼ �I22 cþ 2a2

ðh11 þ h12Þ

� �
;

k21 ¼ k22 ¼ k23 ¼ �aAðh11 þ 2h12Þ; k24 ¼
k25I11
I22

; k25 ¼ �2I22a 1� 2h12
ðh11 þ h12Þ

� �
; ð24Þ
where
A ¼
Z
AðnÞ

dA; I11 ¼
Z
AðnÞ

n1n1 dA; I22 ¼
Z
AðnÞ

n2n2 dA. ð25Þ
Also, D is the torsional rigidity, which for an æleotropic prism with rectangular cross-section, is
D ¼ h44wh
3 2

3
� 128h

p5w

X1
n¼0

1

ð2nþ 1Þ5
tanh

ð2nþ 1Þpw
2h

 !
. ð26Þ
This result is taken directly from section 226 of Love (1927).
Finally, in the equations, the coefficients k1 and k2 are the shear correction factors—due to anisotropy

there are two such coefficients. As described in Appendix B, we solve the boundary-value problems for rect-
angular cross-sections given by Green and Naghdi (1979) for the values of k1 and k2. This solution is found
using a procedure similar to that discussed in Love (1927). To elaborate on the factors k1 and k2 further, it
is convenient to define the function
KðrÞ ¼ 3

2
þ h12h44r2

ðh11 þ 2h12Þðh12 � h11Þ
1þ 12

p2

X1
n¼1

ð�1Þn

n2
sechðnprÞ

 ! !�1

; ð27Þ
which is related to Eq. (B.20). With this function, k1 = K(w/h) and k2 = K(h/w). Fig. 6 shows the function
K(r) with the elastic parameters of crystalline silicon as r is varied. From this figure, it is easy to determine
the anisotropic Timoshenko shear correction factors for a rectangular prism of single-crystal silicon. Notice
that the correction factor is dependent on the ratio of the rod�s height to its width as well as the three elastic
are using Eq. (7.26) from Carlson (1972) for this identification.
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Fig. 6. The function K(r) defined by Eq. (27) for the material properties of silicon. The Timoshenko shear correction factors are
k1 = K(r) and k2 = K(1/r).
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material constants.6 The values for the shear coefficient range from approximately 0.66–0.83. These values
are similar in range to those obtained by Kawashima (1996) and by Hutchinson (2001).
4. Axial deformation model

Since we have determined the constitutive function for a silicon rod, we can now turn to modeling the
dynamics of the DETF. The first step in developing the model of the dynamics is to understand the axial
deformation of the system. In order to accomplish this, we will use Cosserat rod theory and a slightly sim-
plified approximation of the DETF. Since we are assuming that the two main tines are symmetric, when the
device is elongated axially the forces in each tine are equal. Using this knowledge, for the axial deformation
case we approximate the DETF as three rods connected by rigid connections. The middle rod�s width in the
axial model we take to be the sum of the middle tines of the DETF (see Fig. 7). We will then split the force
found in the middle rod of the three rod axial solution to find the force in each of the four rods for the
dynamic analyses. From this simplified model, we can predict the axial deformation of the full DETF.

The derivation of the governing equations of the axial deformation is similar to that given in Kinkaid
and O�Reilly (2002) except the current model includes anisotropy and thermal effects. For each rod in
the axial deformation model, we use the free-energy function (19) with finite strain measures and the mate-
rial constants developed in Section 3.1. Fig. 7 shows a schematic of an axial deformation of the simplified
DETF model and the director naming conventions.

4.1. Axial equations

As in Kinkaid and O�Reilly (2002), for each rod we assume an axial extension with cross-sections per-
pendicular to C remaining perpendicular. Thus, the motion of rod i is
6 Puchegger et al. (2003) also recently found a shear coefficient with a dependence on w/h, however we have been unable to compare
our results to theirs.
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Fig. 7. Cosserat rod schematics showing the DETF, the approximation of the DETF, and the deformed rod subject to an axial
elongation of d. Also illustrated is the naming convention for the directors.
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ri ¼ xiðnÞE3;

d1;i ¼ d1;iðnÞE1;

d2;i ¼ d2;iðnÞE2.

ð28Þ
That is, the rod stays straight and the vectors di,j remain orthogonal and retain their orientation. Conse-
quently, the non-trivial strains are
c11;i ¼ d2
1;i � 1; c22;i ¼ d2

2;i � 1; c33;i ¼
oxi
on

� �2

� 1; ð29Þ
and
j11;i ¼ d 0
1;id1;i; j22;i ¼ d 0

2;id2;i. ð30Þ

The strains which are not prescribed in Eqs. (29) and (30) are identically zero.

As in Fig. 7, we let the length of each rod be Li. We define the following variables to aid in non-dimen-
sionalizing the equilibrium equations:
wi ¼
xi � n
Li

; si ¼
n
Li
. ð31Þ
After following a procedure similar to the one found in Kinkaid and O�Reilly (2002), the differential
equations governing the steady state axial deformation of each rod are
w00
i ¼ �ð4k3;iðw0

i þ 1Þ2 þ 2k3;iððw0
iÞ
2 þ 2w0

iÞ þ k8;ic11;i þ k9;ic22;i

þ k23;ihiÞ�1ðk8;ic011;i þ k9;ic022;i þ k23;ih
0
iÞðw0

i þ 1Þ; ð32Þ

c0011;i ¼
2L2

i

k10;i
ð2k1;ic11;i þ k7;ic22;i þ k8;iððw0

iÞ
2 þ 2w0

iÞ þ k21;ihiÞ; ð33Þ

c0022;i ¼
2L2

i

k11;i
ð2k2;ic22;i þ k7;ic11;i þ k9;iððw0

iÞ
2 þ 2w0

iÞ þ k22;ihiÞ. ð34Þ
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In these equations, ð Þ0 ¼ o
osi
. In addition to the mechanical equations, there is an equation governing the

temperature in the rod, but since we are solving for steady state deformations, this equation is trivially
satisfied.

After solving (32)–(34) subject to the appropriate boundary conditions, the axial force in each composite
rod is determined using the constitutive relation
ni ¼ ð2k3;ic33;i þ k8;ic11;i þ k9;ic22;i þ k23;ihÞ
ox
on

E3. ð35Þ
Then, for the middle tines, we assume that the force in each rod is found using the following procedure: we
take the ratio of the individual rod�s cross-sectional area to the composite rod�s cross-sectional area then
multiply this ratio with the axial force of the composite rod.

4.2. Continuity and boundary conditions

Given the governing equations, we need to define continuity and boundary conditions to relate the
deformations of each individual rod to each other and to the structure as a whole. The connections of
one rod to another are approximated as rigid, giving zero lateral strain at the end of each rod:
c11;ið0Þ ¼ 0; c11;ið1Þ ¼ 0; c22;ið0Þ ¼ 0; c22;ið1Þ ¼ 0. ð36Þ
Also, at each connection, the deflection of the right end of the left rod is equal to the deflection of the left
end of the rod on the right. Therefore,
w2ð0Þ ¼
L1

L2

w1ð1Þ; w3ð0Þ ¼
L2

L3

w2ð1Þ. ð37Þ
We will be applying a strain of � to the overall structure. Or, equivalently, moving the right end of the struc-
ture a distance of d = �(L1 + L2 + L3) (note that we are ignoring the length of the rigid connections) and
not moving the left end of the structure:
� ¼ d
L1 þ L2 þ L3

. ð38Þ
Thus, associated with the overall axial strain � of the structure, we have
w3ð1Þ ¼
d
L3

; w1ð0Þ ¼ 0. ð39Þ
The forces across connections of each rod are equal. This implies that
w0
1ð1Þ ¼

k3;2
k3;1

ðw0
2ð0Þ

2 þ 2w0
2ð0ÞÞ þ

k23;2
2k3;1

h2ð0Þ �
k23;1
2k3;1

h1ð1Þ þ 1

� �1=2

� 1;

w0
2ð1Þ ¼

k3;3
k3;2

w0
3ð0Þ

2 þ 2w0
3ð0Þ

� �
þ k23;3
2k3;2

h3ð0Þ �
k23;2
2k3;2

h2ð1Þ þ 1

� �1=2

� 1.

ð40Þ
With these boundary and continuity conditions we have a complete set of equations and can solve the sys-
tem of ordinary differential equations (32)–(34).

4.3. Axial results

We now consider the previous development and solve the boundary-value problem using MATLAB for
multiple temperatures and strains to illustrate the utility of our equations.
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The first figure, Fig. 8, shows the axial force in the left anchor of the DETF as a function of axial strain
for various temperatures. According to the governing equations, the axial force is constant through the
composite rod. Since there are two tines that make up the middle rod in the composite rod, the axial force
in each tine will be half the force shown in Fig. 8. We have plotted a range of axial strains from �0.1% to
0.1% and three different system temperatures. It is interesting to note that for the strain and temperature
ranges in Fig. 8, the axial force is an approximately linear function of strain. Also, note that this figure
shows the sensitivity of the device to temperature. According to the plot, a change in temperature of about
100 �C is equivalent to stretching the device about 0.04%.

Fig. 9 shows the axial strain � of the composite rod as a function of the axial position (neglecting the
thickness of the rigid masses). The slope changes on the plot at a connection between the middle rod
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and each anchor rod. The addition of the anchor rods attenuates the strain felt in the resonating tines and
thus, it decreases the sensitivity of the device.

Fig. 10 shows the strains c11 and c22 over the entire length of the rod. There are three different deforma-
tions shown in this figure. All of the results are shown at the reference temperature. Notice that for a defor-
mation of ±0.1%, the maximum strain is 0.04%, so the effects of the cross-section deformation are minimal.
For the rest of the analysis, we will ignore the boundary regions and take the rod dimensions to be those of
the center section of the deformed rod.
5. Flexural model

The previous section demonstrated how to quantify the deformation of the system due to axial elonga-
tion and thermal variations. This development provides the axial force and deformed geometry of the
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Fig. 11. Schematic of the displacement u and rotation / in the flexural equations of the Cosserat rod theory.
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device when given an axial strain and temperature variation. The next step needed to understand the DETF
dynamics is to determine its natural frequencies assuming a prescribed axial force. To do this, we will use
the flexural equations for a Cosserat rod found in Green and Naghdi (1979). These equations are similar to
the Timoshenko equations except the Cosserat equations include the anisotropy of the rod and thermal ef-
fects. The solution of the equations gives the transverse displacement of a point of the centerline from its
neutral state, u(x, t), and the rotation of the cross-section, /(x, t) (see Fig. 11).

In this section of the paper we will develop the governing equations for each rod in the structure. Then,
after supplementing these equations by continuity conditions and Euler�s laws for a rigid body, we develop
a procedure to solve for the natural frequencies of the system.

5.1. Transverse flexural equations

First, we assume that the temperature variation in the rod only occurs along the centerline. That means
that h1 ¼ h2 ¼ 0. With this assumption, the governing equations in the d1 direction, which include the influ-
ence of an axial force, are the flexure equations found in Green and Naghdi (1979),
k6
o
2u

on2
� o/

on

� �
þ F

o
2u

on2
¼ qA

o
2u
ot2

; ð41Þ

k16
o
2/

on2
þ k6

ou
on

� /

� �
¼ qIl

o
2/
ot2

; ð42Þ
where the identifications,
d13 ¼ �/; d31 ¼
ou
on

; ð43Þ
are made. Following Rubin (2000), we will define two correction factors; l is a correction factor for the ro-
tary inertia terms and k is a shear correction factor. We take the coefficient k6 from (24), then multiply by
the correction factor such that we obtain a new value for k6: k6 = kk6. In addition,
V ¼ k6
ou
on

� /

� �
; M ¼ k16

o/
on

; ð44Þ
are the shear force and the bending moment, respectively.
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The equation governing the temperature h1 is
�k19
oh1
ot

þ 1

2
k24

o2/
oton

¼ qðs1 þ b2h1Þ � e1
o2h1
on2

. ð45Þ
With our assumptions about the temperature distribution, we can simplify (45) to
1

2
k24

o
2/

oton
¼ qs1. ð46Þ
And, given /(x, t) we can solve for the required entropy supply qs1.
Fig. 4 shows the DETF structure. We will assume the end masses, because of their relative thickness, to

be rigid. Thus, the DETF model will be composed of four rods in transverse vibration with two masses
internal to the system. The motion of each rod in the system will be governed by Eqs. (41) and (42), so every
rod will have a similar form of solution for u(x, t) and /(x, t). In the following discussion, quantities asso-
ciated with each rod will have a subscript of that rod number, i.e., the displacement of rod K will be denoted
uK(x, t). Also, the constitutive coefficient ki of rod K will be denoted ki,K.

In order to make the quantities non-dimensional, we chose the initial dimensions of rod 3 to be reference
values. Undeformed quantities will be denoted with an overbar, and the relevant non-dimensional param-
eters are
gK ¼ LK

L3

; dK ¼ hK
L3

; ð47Þ

s ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k6;3

A3qðL3Þ2

s
; fK ¼ uK

L3

; s ¼ n

L3

; ð48Þ

aK ¼ k6;KðL3Þ2

k16;K
; rK ¼ F K

k6;3
; gK ¼ k6;K

k6;3
; bK ¼ AK

A3

. ð49Þ
Using these rod dependent parameters, and substituting into (41) and (42) gives
ðrK þ gKÞf00K � gK/
0
K ¼ bK

€fK ; ð50Þ

/00
K þ aKðf0K � /KÞ ¼

lKdK2aKbK

12gK
€/K ; ð51Þ
where ð Þ0 ¼ o
os and ð_Þ ¼ o

os.
One can combine these two equations into a single fourth-order equation in terms of /K or fK. Since the

equations are separable, let
/Kðs; sÞ ¼ /KðsÞeiXs; fKðs; sÞ ¼ fKðsÞeiXs. ð52Þ

Then one finds the fourth-order ordinary differential equation
/0000
K þ A/00

K þ B/K ¼ 0; ð53Þ
for /K(s), where
A ¼ ðrK þ gKÞ
�1 X2bK þ lKd

2
KaKbKðrK þ gKÞX2

12gK
� aKrK

� 	
;

B ¼ ðrK þ gKÞ
�1 b2

KlKd
2
KaKX

4

12gK
� aKbKX

2

� 	
.

ð54Þ
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The solution of this fourth-order homogeneous ordinary differential equation is found by assuming
/KðsÞ ¼ ekKs . This gives an equation for kK, the solution of which is
kK ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4B

p

2

s
. ð55Þ
There are three possible forms of the solution to (53) depending on whether kK is imaginary or not. Looking
at kK as a function of X we find a non-dimensional cutoff frequency for each rod,
X2
coK ¼ 12gK

lbKd
2
K

; ð56Þ
above which kK is always imaginary. Thus, as discussed by O�Reilly and Turcotte (1996) there are three dis-
tinct regimes for each rod, X < XcoK, X = XcoK, and X > XcoK. Since the structure is composed of 4 rods,
there are 12 different possible regimes of oscillation for the DETF composite structure.

Assuming the frequency X is below the lowest cutoff frequency of the structure, the solution of (53) is
/KðsÞ ¼ cK1 cosðkK1sÞ þ cK2 sinðkK1sÞ þ cK3 coshðkK2sÞ þ cK4 sinhðkK2sÞ; ð57Þ

where
kK1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4B

p

2

s
; kK2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4B

p

2

s
. ð58Þ
We also find,
fKðsÞ ¼ aK1 cosðkK1sÞ þ aK2 sinðkK1sÞ þ aK3 coshðkK2sÞ þ aK4 sinhðkK2sÞ. ð59Þ

This solution is found in a straightforward manner from the solution for /K.

Noticing that /K(s,s) and fK(s,s) must satisfy (50) one finds the following familiar relationships:
aK1 ¼
gKkK1

bKX
2 � ðrK þ gKÞk2K1

 !
cK2;

aK2 ¼
�gKkK1

bKX
2 � ðrK þ gKÞk2K1

 !
cK1;

aK3 ¼
gKkK1

bKX
2 þ ðrK þ gKÞk2K1

 !
cK4;

aK4 ¼
gKkK1

bKX
2 þ ðrK þ gKÞk2K1

 !
cK3;

ð60Þ
relating the constants cKJ and aKJ.
Thus, we know the form of the solution for each rod. In the composite structure, the equations are re-

lated to each other through continuity conditions. It is to defining these that we now turn.

5.2. Continuity and boundary conditions

The displacement and rotation fields for the four rods are not independent, rather they are linked
through continuity equations. That is, the displacements and angles across any joint must be equal, and
the forces and moments must be equal in magnitude and opposite in direction (e.g., see Fig. 12). These con-
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tinuity equations as well as the boundary conditions for the system, will provide a complete model for the
motion of the composite structure. We now derive these continuity equations.

The linearized angle and displacement continuity equations for each rod in the system are, for rod 1,
f1ðg1; sÞ ¼ fm1 �
gm1
2

/1ðg1; sÞ; /1ðg1; sÞ ¼ /m1; ð61Þ
for rod 2,
f2ð0; sÞ ¼ fm1 þ
gm1
2

/m1; /2ð0; sÞ ¼ /m1;

f2ðg2; sÞ ¼ fm2 �
gm2
2

/m2; /2ðg2; sÞ ¼ /m2;
ð62Þ
for rod 3,
f3ð0; sÞ ¼ fm1 þ
gm1
2

/m1; /3ð0; sÞ ¼ /m1;

f3ðg3; sÞ ¼ fm2 �
gm2
2

/m2; /3ðg3; sÞ ¼ /m2;
ð63Þ
and for rod 4,
f4ð0; sÞ ¼ fm2 þ
gm2
2

/m2; /4ð0; sÞ ¼ /m2. ð64Þ
Here, /m1 and fm1 are the angle and displacement of mass 1, and /m2 and fm2 are the angle and displace-
ment of mass 2. Also,
gm1 ¼
Lm1

L3

; gm2 ¼
Lm2

L3

. ð65Þ
Note that each rod�s axial coordinate n, and therefore s, starts at zero at the left end of the rod. This allows
for cleaner notation as well as a reduction in the numerical values of the hyperbolic functions in the
equations.

As we did with the other non-dimensional parameters, we use the properties of the undeformed third rod
to non-dimensionalize the forces and moments (44). We find
pKðs; sÞ ¼
V Kðs; sÞ
k6;3

¼ gKðf0K � /Þ;

hKðs; sÞ ¼
MKðs; sÞ
k6;3L3

¼ gK
aK

/0.

ð66Þ
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We will look at the two end masses and write a non-dimensional form of Euler�s laws for their motion
(see Fig. 13). We find for mass one,
mm1

A3qL3

� �
€fm1ðsÞ ¼ p1ðg1; sÞ � p2ð0; sÞ � p3ð0; sÞ;

Jm1

A3qL
3

3

 !
€/m1ðsÞ ¼

gm1
2

ð�p1ðg1; sÞ � p2ð0; sÞ � p3ð0; sÞÞ þ h2ð0; sÞ þ h3ð0; sÞ � h1ðg1; sÞ.
ð67Þ
And we find that
mm2

A3qL3

� �
€fm2ðsÞ ¼ p2ðg2; sÞ þ p3ðg3; sÞ � p4ð0; sÞ;

Jm2

A3qL
3

3

 !
€/m2ðsÞ ¼

gm2
2

ð�p2ðg2; sÞ � p3ðg3; sÞ � p4ð0; sÞÞ þ h4ð0; sÞ � h2ðg2; sÞ � h3ðg3; sÞ;
ð68Þ
for mass 2 where Jma is the mass moment of inertia about out-of-plane axis.
The final equations of the flexural model are the boundary conditions. We assume the system to be fixed

at both ends, so the boundary conditions become
f1ð0; sÞ ¼ 0;

/1ð0; sÞ ¼ 0;

f4ðg4; sÞ ¼ 0;

/4ðg4; sÞ ¼ 0.

ð69Þ
Assuming a known axial force and with these boundary conditions, the continuity equations, and the
equations for the forces and moments discussed previously, there are a total of 32 equations. In these equa-
tions there are the following unknowns: 16 constants aKJ, 6 forces pK(s,s), 6 moments hK(s,s), 2 displace-
ments fma, 2 angles /ma, and the frequency X. Thus, we can form a homogeneous linear system in terms of
the aKJ and X.

Let a = (a11,a12, . . . ,a43,a44)
T. Then, using Eqs. (62), (63), (67) and (68) and including the values of the

unknown constants in terms of the aKJ, we can form a 16 · 16 matrix, D(X, �), such that,
DðX; �Þa ¼ 0. ð70Þ
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For a non-trivial solution to Eq. (70), one solves for X and � for which
Fig. 14
widths
detðD X; �ð ÞÞ ¼ 0. ð71Þ
The mode shapes of the structures can then be determined by providing values of X and � such that
det (D) = 0, and then finding a vector in the null space of D. This vector provides the coefficients aKJ to
form the mode shape. These computations were all accomplished using MATLAB.
6. Combining the models and results

Using the flexural model, we now know the relationship between the natural frequencies and the axial
force. At this point, we can combine the two models. We will take a certain strain and temperature and use
the axial model to predict the axial force and the post-deformation dimensions of the rod. We will then use
this force and these dimensions to calculate the natural frequencies from the bending model.
6.1. DETF results

We now provide a characterization of the natural frequencies of a specific DETF geometry as a function
of strain. Fig. 14(a) shows the first eight natural frequencies of the DETF as functions of strain � ranging
from �0.4% to 0.4%. Notice that when the curve characterizing a mode reaches zero natural frequency, the
device has buckled. This is an important design consideration, because the device must function through
the entire range of strains that one desires to measure. Also shown in this figure is a mode crossing of
the sixth and seventh modes. This crossing is not surprising since the device is sufficiently complex, but
an effective resonator design will pick device geometries such that these mode crossings do not occur in
the range of operation of the device. Fig. 14(b) gives a closer view of the first two natural frequencies
with strain varying from �0.1% to 0.1%. From this plot, we can estimate the sensitivity of the device to
strain.
-0.004 -0.002 0 0.002 0.004
0

2

4

6

8

10

12

14

Axial Strain

Fr
eq

ue
nc

y 
(M

H
z)

-0.001 -0.0005 0 0.0005 0.001
0.5

1

1.5

2

2.5

3

Axial Strain

Fr
eq

ue
nc

y 
(M

H
z

)

(a) (b)

. (a) Resonant frequencies as functions of strain � for a DETF with 100 lm long main tines, 3 lm long anchors, 3 lm rod
, and 20 lm rod depths. (b) A closer view of the first two modes of the strain response of the same DETF.



0 20 40 60 80 100

-0.4

-0.2

0

0.2

0.4

0.6

0 20 40 60 80 100
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100

-0.4

-0.2

0

0.2

0.4

0.6

0
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

20 40 60 80 100

(a) (b)

(c) (d)

Fig. 15. First four modes for an unstretched DETF. (a) The first mode of vibration occurs at 1.46 MHz. (b) The second mode occurs at
2.54 MHz. (c) The third mode occurs at 5.01 MHz. (d) The fourth mode occurs at 6.96 MHz. The horizontal axis in these four figures
shows the axial position in lm.

6542 T.A. Lauderdale, O.M. O’Reilly / International Journal of Solids and Structures 42 (2005) 6523–6549
To further illustrate how the DETF oscillates, Fig. 15 shows the first four mode shapes of the DETF sub-
ject to zero strain and a temperature equal to the reference temperature.7 Note the similar nature of modes 1
and 2 and of modes 3 and 4. These modes are the same for the two main rods, except they are vibrating 180�
out of phase. In the second and fourth modes, the vibrations of the two main rods balance each other and
there is no motion of the support structure. In the first and third modes, this is not the case, and the vibration
of the supports lowers the natural frequency of the system. Depending on the geometry of the supports, the
frequencies of modes 1 and 2 may be very similar, so attention must be paid to their design.

Finally, in order to understand the importance of including the material anisotropy in the equations,
Fig. 16 shows a comparison of anisotropic results to those obtained using the isotropic approximation
of the properties of silicon found in George (1999). The predicted frequency–stress curves differ widely
in the two cases, especially as the operating frequency gets higher. Also, the predicted strain sensitivities
of the device differ. Using the anisotropic constitutive equations, the predicted sensitivity around zero strain
7 For modes one and three the anchor rods are not half way between the two tines because of the rotation of the masses.
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for the second mode is 348 Hertz per microstrain, but using the isotropic approximation the predicted sen-
sitivity is 409 Hertz per microstrain. Predicting the correct sensitivity is crucial to the design and operation
of a strain sensor.

6.2. Prototype device

We will now use the same modeling procedure to understand the dynamics of a slightly more compli-
cated structure. We compare our model to a polycrystalline silicon DETF with a comb drive actuator
(see Fig. 17) fabricated and tested with results given in Wojciechowski et al. (2004). To simulate the dynam-
ics, we model the comb drive as a mass located in the middle of the main tines which gives six rods and four
masses. By measuring the size of the comb drive we find that each is approximately 30 times as massive as
one of the rods adjacent to it. We then use this value for the mass ratio such as that found in (67)1. Like-
wise, we compute the inertia ratio found in (67)2.

By way of comparison, according to Wojciechowski et al. (2004), the device resonated at 217 kHz which
was the frequency that the model predicted. Also, the measured strain sensitivity of the device was 39 Hz/
l�, while the model predicted a strain sensitivity of 34 Hz/l�. When testing the thermal sensitivity of the
Fig. 17. SEM of the prototype DETF with comb drive actuators and a schematic of the model where we approximate the comb drives
with rigid masses.
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device, the device was isolated from its surroundings, so there are no stresses due to thermal expansion.
Rather, the changes in the material properties with temperature were the main contributers to the thermal
sensitivity. With this in mind, the thermal sensitivity of the device was �7 Hz/�C while the model predicted
a thermal sensitivity of about �8 Hz/�C. If we assume the anchors of the device do not allow expansion
with temperature, the model predicts that the thermal sensitivity is �101 Hz/�C. Thus, according to the
model, a device in which the DETF is attached to a substrate will have an actual thermal sensitivity some-
where between �8 Hz/�C and �101 Hz/�C.
7. Concluding remarks

It is prudent to recall the assumptions employed to develop the models for the DETF in Section 6. In
particular, we assume that the device consists of a series of rods connected by masses. The undeformed rods
are assumed to be straight, prismatic, linearly elastic and have rectangular cross-sections. As discussed in Sec-
tion 3.1, we assume that the material symmetry of the material that composes these rods is compatible with
their geometry. In operational mode, the axial deformation, distributed evenly throughout the rods, is ana-
lyzed prior to determining the flexuralmodes of vibration (i.e, we perform a small-on-large analysis). The flex-
ural modes of vibration feature transverse shear and the equations of motion are similar to those for a
Timoshenko beam. Finally, we model the temperature field in the device using the approximation (5). As a
consequence of our assumption on the axial deformation, and in spite of the anisotropy of the rods, a suffi-
cient amount of the material symmetry of the rods are preserved to ensure that the (small) flexural vibrations
are uncoupled from torsional and extensional vibrations. This feature is a key to the feasibility of our model.

In closing, we have developed and discussed a rod-based model for resonant MEMS devices. This model
encompasses many of the geometric and material features which are unique to silicon-based resonators, and
is a significant extension to existing models for these devices. Using the model, we have characterized a spe-
cific device and predicted the mechanical sensitivity to within 13% of its measured value. As mentioned, our
model and the methods we employ can be used to analyze a variety of models and hopefully provide a help-
ful design tool.
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Appendix A. Reduction of the free energy quadratic

The material and geometric symmetries of the rod that were discussed in Section 3.1 allow for simplifi-
cations to be made to a general quadratic form of the free energy function. In this appendix, these simpli-
fications are discussed.

We begin by assuming that the free energy function is a quadratic function of its parameters, cij, jai, ha,
and h. Since there are 15 of these parameters, the quadratic function has 120 terms, which we decompose
into 4 sets:
kw ¼ kw1 þ kw2 þ kw3 þ kw4. ðA:1Þ
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We will see that the symmetries implied by (17) or equivalently by the group (15) allow us to simplify the
constitutive equations by removing terms from (A.1)

We take for the first term of the free energy function, k w1,
2kw1 ¼ k1c211 þ k2c222 þ k3c233 þ k4c221 þ k5c223 þ k6c213 þ k7c11c22 þ k8c11c33 þ k9c22c33 þ k10j2
11

þ k11j2
22 þ k12j2

12 þ k13j2
21 þ k14j12j21 þ k15j2

23 þ k16j2
13 þ k17j11j22 þ k18ðhÞ2 þ k19ðh1Þ2

þ k20ðh2Þ2 þ k21c11hþ k22c22hþ k23c33hþ k24j13h1 þ k25j23h2. ðA:2Þ
For the second term, kw2, we take
2kw2 ¼ k69c11c12 þ k79c11c13 þ k115c12c22 þ k58c12c23 þ k76c12c33 þ k73c13c22 þ k66c13c23

þ k78c13c33 þ k104c11j12 þ k114c11j13 þ k26c11j21 þ k28c12j11 þ k32c12j22 þ k33c12j23

þ k34c13j11 þ k38c13j22 þ k39c13j23 þ k41c22j12 þ k42c22j13 þ k43c22j21 þ k47c23j12

þ k48c23j13 þ k49c23j21 þ k53c33j12 þ k54c33j13 þ k55c33j21 þ k59j11j12 þ k60j11j13

þ k61j11j21 þ k67j12j22 þ k68j12j23 þ k71j13j22 þ k72j13j23 þ k74j21j22 þ k75j21j23

þ k80c11h1 þ k82c12hþ k84c12h2 þ k85c13hþ k87c13h2 þ k89c22h1 þ k92c23h1 þ k95c33h1

þ k98j11h1 þ k100j12hþ k102j12h2 þ k103j13hþ k105j13h2 þ k106j21hþ k108j21h2

þ k110j22h1 þ k113j23h1 þ k116hh1 þ k119h1h2. ðA:3Þ
We set
2kw3 ¼ k118c11c23 þ k64c12c13 þ k63c22c23 þ k120c23c33 þ k27c11j23 þ k30c12j13 þ k35c13j12

þ k37c13j21 þ k45c22j23 þ k46c23j11 þ k50c23j22 þ k57c33j23 þ k62j11j23 þ k65j12j13

þ k70j13j21 þ k77j22j23 þ k81c11h2 þ k83c12h1 þ k90c22h2 þ k91c23hþ k99j11h2 þ k101j12h1

þ k107j21h1 þ k111j22h2 þ k112j23hþ k117hh2. ðA:4Þ
Finally, for kw4, we have
2kw4 ¼ k88c11j11 þ k94c11j22 þ k29c12j12 þ k31c12j21 þ k36c13j13 þ k40c22j11 þ k44c22j22

þ k51c23j23 þ k52c33j11 þ k56c33j22 þ k86c13h1 þ k93c23h2 þ k97j11hþ k109j22h. ðA:5Þ
Still following Green and Naghdi (1979), we look at transformations of cij, jai, h, and ha that are equivalent
to (17). For the first group of transformations, (17)1, we find that
c12 ! �c12; c13 ! �c13; j12 ! �j12;

j21 ! �j21; j13 ! �j13; h1 ! �h1.
ðA:6Þ
Since the strain measures and temperatures are independent, these imply that the strain energy function
cannot depend on any of the terms in (A.3).

For the second group of transformations, (17)2, we find that
c12 ! �c12; c23 ! �c23; j12 ! �j12;

j21 ! �j21; j23 ! �j23; h2 ! �h2.
ðA:7Þ
Again, since the strain measures and temperatures are independent, these imply that the strain energy func-
tion cannot depend on any of the terms in (A.4).



6546 T.A. Lauderdale, O.M. O’Reilly / International Journal of Solids and Structures 42 (2005) 6523–6549
Finally, for the third group of transformations, (17)3, we find that
c13 ! �c13; c23 ! �c23; j11 ! �j11;

j12 ! �j12; j21 ! �j21; j22 ! �j22.
ðA:8Þ
Thus, the free energy function cannot depend on any of the terms in (A.5). The only terms in the overall
quadratic that a rod with the symmetries (17) may depend on are the 25 terms in (A.2). For a different order
of application of the symmetries (17), we will find the same result, but the groups (A.3)–(A.5) will be slightly
different.
Appendix B. Determining the material constants for a linearly elastic rod

In this appendix, we elaborate on the prescriptions of the 25 ki in the constitutive equation (19). We first
compare the relations (20) to the usual mechanical stress strain relation
rij ¼ cijkl�kl þMiiðh� �HÞ; ðB:1Þ
to determine the constants cijkl in terms of h11, h12, and h44. With some work, we find that
c1111 ¼ c2222 ¼ c3333 ¼ h11;

c1122 ¼ c1133 ¼ c2233 ¼ h12;

c1212 ¼ c1313 ¼ c2323 ¼ h44.

ðB:2Þ
Using these relations, we can write the free-energy function for a three-dimensional linearly elastic solid
composed of a material with cubic symmetry. This is
q�
ow

� ¼ 1

2
cijkl�ij�kl � mij�ijh

� � 1

2
ch�2 � q�

ogoh
�; ðB:3Þ
where mij are the components of the stress–temperature tensor given by (23), c is the specific heat of the
material, and go is the entropy in the reference state. We assume that go = 0 for the current analysis.

Now, we will use direct integration to determine some of the 25 coefficients, ki, of the free-energy func-
tion. This method, as discussed in O�Reilly (1998), will hold for all deformations such that the
approximation
r�ðn1; n2; n; tÞ ¼ rðn; tÞ þ nadaðn; tÞ ðB:4Þ
is a representation. To deal with cases where (B.4) does not hold, one can add a function to the free energy
function that is not obtained by direct integration. The free energy function for a Cosserat rod where (B.4)
holds is given by
kw ¼
Z

q�
ow

� dA. ðB:5Þ
Performing this integration and using, from O�Reilly (1998),
�11 ¼
1

2
c11; �22 ¼

1

2
c22; �33 ¼ c33 þ faja3; ðB:6Þ

�12 ¼
1

2
c12; �13 ¼ c13 þ

1

2
faja1; �23 ¼ c23 þ

1

2
faja2; ðB:7Þ
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we find
2kw ¼ 1

4
Ah11c211 þ

1

4
Ah11c222 þ

1

4
Ah11c233 þ

1

2
Ah12c11c22 þ

1

2
Ah12c11c33 þ

1

2
Ah12c22c33 þ Ah44c212

þ Ah44c213 þ Ah44c223 þ
1

2
I11h44j2

11 þ
1

2
I11h44j2

12 þ
1

2
I11h11j2

13 þ
1

2
I22h44j2

21 þ
1

2
I22h44j2

22

þ 1

2
I22h11j2

23 �
1

2
Am11c11h�

1

2
Am11c22h�

1

2
Am11c33h�

1

2
Ach2 � 1

2
I11ch

2
1 �

1

2
I22ch

2
2

� I11m11j13h1 � I22m11j23h2; ðB:8Þ
where A is the area of the cross-section and Iaa are the areal moments of inertia. Thus, by comparison with
(19) we find the following coefficients for homogeneous deformations:
k1 ¼ k2 ¼ k3 ¼
1

4
Ah11; ðB:9Þ

k7 ¼ k8 ¼ k9 ¼
1

2
Ah12; ðB:10Þ

k4 ¼ �k5 ¼ �k6 ¼ Ah44; ðB:11Þ

k18 ¼ � 1

2
Ac; k19 ¼ � 1

2
I11c; k20 ¼ � 1

2
I22c; ðB:12Þ

k21 ¼ k22 ¼ k23 ¼ � 1

2
Am11; k24 ¼ �I11m11; k25 ¼ �I22m11. ðB:13Þ
We have denoted k5 and k6 with an overbar because these will not be the final values we use.
As was noted previously, the results (B.9)–(B.13) hold only for deformations where (B.4) holds. This

approximation will not hold for transverse bending deformations, so we will improve our approximations
of k5 and k6 by comparison with exact solutions for a cantilevered linearly elastic rod subject to a transverse
end load. This comparison was performed for a rod with orthotropic symmetry and a circular cross-section
by Green and Naghdi (1979). We extend their results to include rectangular cross-sections. For any geom-
etry, the coefficient values they found are
k5 ¼ �I22
ovð0; 0Þ

oy
;



k6 ¼ �I11

oUð0; 0Þ
ox

;



ðB:14Þ
where U and v solve the harmonic equations,
DU ¼ 0; Dv ¼ 0; ðB:15Þ

subject to boundary conditions dependent on the material properties and the geometry of the cross-section.
For our problem, the boundary conditions are; for y ¼ � h

2
,

oU
oy

¼ �ðs1122 þ 4s1212Þ
h
2
x;

ov
oy

¼ � 3

2
s1122 þ 2s1212

� �
x2 þ h2

8
s1122;

ðB:16Þ
and, for x ¼ �w
2
,

oU
ox

¼ � 3

2
s1122 þ 2s1212

� �
y2 þ w2

8
s1122;

ov
ox

¼ �ðs1122 þ 4s1212Þ
w
2
y.

ðB:17Þ
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The compliances sijkl are defined by the identities
sijklcmnij ¼
1

2
ðdmk d

n
l þ dml d

n
kÞ; ðB:18Þ
and have the same symmetry properties as cijkl. Using (B.2), we find,
s1111 ¼ s2222 ¼ s3333 ¼
h11 þ h12

ðh11 þ 2h22Þðh11 � h12Þ
;

s1122 ¼ s1133 ¼ s2233 ¼
h12

ðh11 þ 2h22Þðh12 � h11Þ
;

s1212 ¼ s1313 ¼ s2323 ¼
1

4h44
;

ðB:19Þ
when (B.18) is solved for a cubic crystal.
We solve the boundary-value problems (B.15)–(B.17) by using the method outlined in Love (1927). This

yields the following equations for the bending coefficients:
k5 ¼ Ah44
3

2
þ h12h44
ðh11 þ 2h12Þðh12 � h11Þ

w2

h2
þ 12w2

p2h2
X1
n¼1

ð�1Þn

n2
sech

nph
w

 ! !�1

;

k6 ¼ Ah44
3

2
þ h12h44
ðh11 þ 2h12Þðh12 � h11Þ

h2

w2
þ 12h2

p2w2

X1
n¼1

ð�1Þn

n2
sech

npw
h

 ! !�1

.

ðB:20Þ
In a classical setting, we would take
k5 ¼ k1�k5; k6 ¼ k2�k6; ðB:21Þ

where ka are known as the Timoshenko shear correction factors. Comparing these values for k5 and k6 with
the values in (B.20) we find a formula for the correction factors.

The remaining coefficients are determined by comparison with the results found by Green and Naghdi
(1979). Substituting our material properties, (B.2), (B.19) and (23), results in the coefficients (24). Thus, we
have prescriptions for all 25 constants in the strain energy function of a material with cubic symmetry in
terms of the three mechanical material parameters, the thermal material parameters, and the geometry
of the rod.

For the example of crystalline silicon, we use values for the specific heats and thermal expansion coef-
ficients given in table form as a function of temperature from Kagaya and Soma (1999) and Soma and Ka-
gaya (1999) respectively. And, from George (1999) we use values for the elastic material parameters. At
standard temperature and pressure, they are
h11 ¼ 1.6564� 1011 Pa;

h12 ¼ 0.6394� 1011 Pa;

h44 ¼ 0.7951� 1011 Pa.

ðB:22Þ
In addition, we have the following temperature dependence for silicon,
1

h11

� �
dh11
dT

¼ �9.4� 10�5 K�1;

1

h12

� �
dh12
dT

¼ �9.8� 10�5 K�1;

1

h44

� �
dh44
dT

¼ �8.3� 10�5 K�1.

ðB:23Þ
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We now have full prescriptions for the constitutive equations for a rod of crystalline silicon that is initially
straight and prismatic.
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